-AD-A124 187 RDAPTIVE FIXED INTERVAL TRAJECTORY SMOOTHING(U)
NATIONAL RANGE OPERATIONS DIRECTORATE WHITE SANDS
MISSILE RANGE NM W S RGEE ET AL. JAN 83 TR-85

UNCLASSIFIED . F/G 1271




AR EE

334 m_mmnuum

-}

1.6
=

|-4
 m—
——
 ———
 —
 ——

==

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

..

L i 59 A ———

~_adk




_'u ‘\‘-_:‘.-‘:~1 ‘\'.'_“‘ » f‘v'\w—.;—-:“ TV o T o
- .\.- v R R T T L S e ———
« . ~ L N L R S A tiiiane 4 M .v*_—

v‘_‘,.‘ s\‘\ Y N o S AR M Reare e |
L A WL, W P TR VPR R N a P R T U - Ve - M

ADAPTIVE FIXED INTERVAL TRAJECTORY SMOOTHING

MA124107

TECHNICAL REPORT NO. 85 ™

JANUARY 1983

MATHEMATICAL SERVICES BRANCH s
DATA SCIENCES DIVISION SN

US ARMY WHITE SANDS MISSILE RANGE e
WHITE SANDS MISSILE RANGE, NEW MEXICO V]

1.
-

.. ‘,’.{,

TR TR

DE Fite copy

—

\;.* < U o .o .

| This document has been approved AR
for public release and sale; its "
diswibution is ualimited. —

s,

e U W UL A



ADAPTIVE FIXED INTERVAL TRAJECTORY SMOOTHING ‘ pamd

D;C ng
cory ii;

'.ﬂﬂﬁy}

Accession Yor

NTIS GRA&I x
TECHNICAL REPORT NO. 85 DTIC TAB ] 4
Unannounced O |
JANUARY 1983 Justificatio
By.
Distribution/
Availability Codes

Avail and/or
Dist Special

A

Written by: :222///°’¢ ,(7/Z:f/
WILLIAM S. AGEE
Mathematician C7
ROBERT H. TURNER
Mathematician

L on cam |
.

Reviewed by: > T Az

JON E. GIBSON
Chief, Mathematical Services Branch

7/%512

F. THOMAS STARKWEATHER e
- Chief, Data Sciences Division A

Approved by




. . N . N . - . - . A . PR . . - PO N S - N . SN T
P — T T s e RSN RN RN - N JEA
R T T I P . - -

2

L

UNCLASSIFIED ,
{ SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) X
T D INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 3

1. REPORT NUMBER 2. SOVT ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER : {

! TECHNICAL REPORT NO. 85 p-ApnY /7] R
4. TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD COVERED 4]

9

- ADAPTIVE FIXED INTERVAL TRAJECTORY SMOOTHING 5
. 6. PERFORMING ORG. REPORT NUMBER ]
=1

m 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) -

o WILLIAM S. AGEE

ROBERT H. TURNER
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::22R&A=OERLKE.JEINTT'NPURN°BJEERCST' TASK
Data Sciences Division
National Range Operations Directorate
White Sands Missile Range, New Mexico 88002

Vo

v
™
) i

re

v
-

L2 tt. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE i.
Mathematical Services Branch (STEWS-NR-AM) JANUARY 1983 :
.t Data Sciences Division, National Range Operations [1!3. NUMBER OF PAGES
. White Sands Missile Range, NM 88002 19
‘ T4. MONITORING AGENCY NAME & ADDRESS(1! ditferent from Controlling Oftfice) 1S. SECURITY CLASS. (of this report)
e UNCLASSIFIED
- [8a. DECL ASSIFICATION/ DOWNGRADING
- SCHEDULE
N/A

i 16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED.

-

e al

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if ditferent from Report)

18. SUPPLEMENTARY NOTES

e o
\

!

19. KEY WORDS (Continue on reverse side if y and § ity by block mumber) - N\

Fixed Interval Smoothing, Kalman Filter, Square Root Filtering, Adaptive
Filtering

i

0. ABSTRACT (Continue on reverse side if neceseary and identity by block number)

An adaptive, fixed interval smoother for trajectory estimation is described.
- The fixed interval smoother uses the modified Bryson-Fraser formulation which o
" combines the state estimates of a forward running Kalman filter and a backward
running adjoint filter. The square root formulation used for the Kalman filter
is described. The procedures used to adapt the Kalman filter to the local noise
content of the measurements and to adapt the filter to abrupt changes in target
acceleration are discussed. ° :
e

E DD ':2:";, 1473 eoiTion oF 1 NOV 68 15 OBSOLETE UNCLASSIFIED -

S Tt T et e L e msdteabssistndinintsiimdiidiiteond
P R R R S N T A AP N N . P PE "




4

b
Y
TABLE OF CONTENTS |
oo #
iy :
(".“ ‘f

PAGE

‘».
IR

INTRODUCTION o ¢ o & ¢ ¢ ¢ ¢ o o o o o s o o o o ¢ = o o o 1

Taka 3

TRAJECTORY AND MEASUREMENT MODELS. . . . . ¢« &« « ¢ ¢ & o « & 2

KALMAN FILTER: + ¢ & ¢ 4 o o s o o o o s o o o s s s o o o o 3
INITIALIZATION OF THE KALMAN FILTER. « . . &+ &« « ¢ ¢ o« o« o & 4
MEASUREMENT NOISE COVARIANCE . . . . ¢ ¢ ¢ 4 ¢ 4 ¢ o o o o & 6
STATE NOISE COVARIANCE . . . . « . . ¢ « + . I 6

THE ADJOINT FILTER . . . & &+ v ¢ ¢« ¢ ¢ ¢ o o o o ¢ o o o o o 9

PP AP SIS AP T T

OPTIMAL SMOOTHED ESTIMATES . . . + « &+ & ¢ ¢« o « ¢« &+ « « » o 10

APPENDIX A . v & &+ & v o s o o o o o o s o o s o o o o o o o 11 4

! APPENDIX B . & & v 4 v ¢ s o o o o o o s o o s o o o o« s « o 12

APPENDIX € . & & ¢ 4 4 o o o o o o o o s o o o o o s o o » » 13

wTr—ve
NAORL

APPENDIX D . ¢ 4 & ¢ ¢ o s o o o o o o s o o o o o« o s s+ o« 1lb

REFERENCES . . ¢« « & v ¢ v o o o o o s o o o« o o s o s « + o 15

-
>

B
K
.
.......... -
- e e e T e
' PRI T Yok U Sl Sl U UL IP NI S P . P P -
PRIPYLY ) et ao s & e § Al




.........
..............

KTRCDUCTICH

Eg The adaptive, fixed interval smoother uses raw cartesian data input, x(ti),
u” y(ti), z(ti) for t, = t,, toy == =t where t, is the first measurement
' :5 time and tf is the final trajectory measurement time, to produce smooth
. estimates of the trajectory states, position, velocity, and acceleration,
Ei In contrast to other smoothers the fixed interval smoother uses the measure-
+ r. ments at all trajectory measurement times to estimate the trajectory states :
B at each measurement time, Thus, in a sense one could say that the smoothing E
J zz interval is the total trajectory time. The fixed interval smoother is based B
] on the modified Bryson-Frazier formulation, denoted by mBF, which was develop- !
@QV ed by Bierman in [ 1]. The mBF development of the fixed interval smoother 5

combines a forward running Kalman filter with a backward adjoint filter which

uses the Kalman filter residuals as input and also uses other Kalman filter

computed quantities. The m2F smoother is a very stable, computationally j

e
o,

efficient form of the fixed interval smoother,

The fixed interval smoother is made adaptive by adapting the forward Kalman
ij filter to the local noise content of the raw position data and also adapting

the filter to acceleration changes which are sensed in the future measurements.

E: The Kalman filter is initialized with least squares state estimates at the

; desired start time and again after any large time break in the measurement

:; sequence, The smcothirg program expects that the cartesian measurement input
has been preprocessed to the extent that it is free from wild observations.
The smoother outputs trejectory position, velocity, and acceleration and esti-

ég mates of the errors associated with these quantities. The trajectory states

and their error cstimates can be further processed by an output routine to

IPYI W SO BPUE SN AP P .
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rotate anc translate the states to a desired coordinate systerm and origin, to
compute quantities derivable from cartesian position, velocity, and accelera-
tion, to combine the trajectory states with atmospheric measurerents, and to

reformat the output.

TRAJECTCRY A4C NEZASUREMENT MODELS

Let s{t,) be a 3-vector which represents any of the three ccordinates of the

K
trajectory, i.ev, s = { X, X, X )y ors =(y, y,¥)pors=(2,2,2).
Assume that each coordinate of the trajectory cbeys the discrete time dynamic

state equation
s{ty 4 ) = ¢(8) s(t) + v(8))u, (1)

where b, = tk " tk. ¢(Ak) is the second order transition matrix

1

2
1 8, 4y

o4 ) = fC 1 4, (2)
c 0 1

u is an unknown, constant scalar forcing function and y(Ak) is the vector
Ya,) = [ &2, 8%, &, ] (3)
k k/6 k/2 “k

Let m(ti) denote the position measurement available to the smoother, m(ti) is

represented as

m(t,) = Hs(ty) + e(t,), (4)

where H = [100] and e(ti) is a zero mean measurement error with variance R(ti).
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CALPAN FILTER

Let s{k/k) and s{k/k-1) denote the filtered and predictec state estimates at
time t,. Also, let P(k/k) and P{k/k-1) dencte the covariance matrices of the
filtered and predicted state estimates at time tk‘ The state estimates and

their covariances are determined by the usual Kalman filter equations,

S(k+1/k) = (8, )5(k/K) (5)
PIK#1/K) = o8, )P(k/k)$T(8,) + alk)v(e, )y (s,) (€)
P(k#1/k+1) = P(k#1/K) = P(k+1/K)RT(HP(K$1/Kk)HT + R(t, ,1)) IHP(k+1/K) (7)
g(m/;:q) = S(k#3/k) + PLk$1/KHDHIRTI(E, ) (m(t ,q) = HE(K#1/K)) (8)

The filter equations given in (3) - (8) are not implemented directly, but are
implemented in a square root form, Let the covariance matrix P(k/k) be repre-
sented as P(k/k) = U(k/k)D(k/k)UT(k/k) where U{k/k) is unit upper triangular
and D(k/k) is diagonal with positive diagonal elements. Also, P(k+1/k) =
U(k+]/k)D(k+1/k)UT(k+]/k). The measurement noise variance, R(tk), in the fil-
ter equations represents the noise variance in the vicinity of time tk. q(k)

is a scalar -representing the uncertainty of the unknown forcing term, u,

At a time update the upper triangular factor U and diagonal factor [ of the
predicted covariance matrix are updated rather than computing an updated
covariance, P(k+1/k), The updated U-C factors U(k+1/k) and D(k+1/k) are
obtained via the Agee - Turner matrix factorization algorithm given in
Appendix A anc described by Bierman in [ 2], Thus, after a time update,

we have the predicted state estimate computed from (5) and the U-L factors
U(k+1/k) and D(k+1/k) such that P(k+1/k) = U(k+1/k) D(k+1/k) UT(k+1/k). 1f
U(k/k) and D(k/k) are the U-D factors of P(k/k), then the U-D factors of the

......................................................................
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l. product ¢(Ak)P(k/k)¢T(Ak) in (6) are (since ¢(Ay) is upper triangular),
U= o(s,)U(k/k) (2)
and
- D = D(k/k) (10)
. ‘ The U-D factors of P(k+1/k) are obtained via the algorithm of Appendix % using
}; the U-D factors given in (9) and (10).

At a measurement update the state estimate S(k+1/k+1) is computed from (8),
The U-D factors, U(k+1/k+1) and C(k+1/k+1), of P(k+1/k+1) are computed by noting

that P(k+1/k+1) given by (7) is the sum of a positive definite matrix P(k+1/k),

TE Ty rr
1" ! '
B T

L whose U-[C factors are available, and a symmetric dyad c-uuT where

- c = -(HP(k+1/k)HT + R(tk))'1 is a scalar and U = P(k+1/k)HT is a 3-vector, The
il algorithm of Appendix A could be used to compute U(k+1/k+1) and C(k+1/k+1),
However, the negative value of ¢ presents some potential problems in using this
nf algorithm so that we will use the algorithm of Appendix B to obtain the U-D
factors of P(k+1/k+1), The algorithm of Appendix B exploits the special struc-
ture of c~uuT to compute the updated U=-D factors more accurately than the algor-

.- ithm of Appendix A,

AOUNUS N A apaia BrLoae ©  ULen DO
. , .

INITIALIZATION OF THE KALMAR FILTER

At the beginning of the measurement sequence and at the end of large time

i; breaks in the measurement sequence 1initial values of the position, velocity,
i and acceleration states and the U-L factors of their covariance matrix must be
§ f; supplied to the Kalman filter., The quantities required for initialization of
é e the Xalman filter are obtained by least squares estimation over the first ”s
§ i: data poirts, Thus, if t; is the time of initialization, the estimate 5{1/1)
.
5 .-
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I' used to initialize the filter is obtained by minimizing,
N
AR s 2
1 ] (mit)) - Ho(t,-t,)s(t,)) (1)
% ie

with respect to s(tl}.' The least squares estimate is given by,

|
S

§1/1) = P_z]q)(t].-t]):ﬂm(ti), (12)
i=

where P is given by,

14
13}

- }; =3

j=]

s
nr
¢t -ty d@(ti-t]) (13)
ia: The covariance matrix of £(1/1) is calculated from,
P(1/1) = Pa?,
!' where G? is obtained from the least squares residuals as,

N
- G2 = ] zs(m(ti) - Hé(ti-t])g(I/I))z (14)

s T i=]
The U-D factors of P(1/1) are obtained via the Cholesky decomposition algorithm

given in Appendix C,

At the present time Ns js target dependent as in Table 1. In Table 1 T is the

sampling period of the measurements.
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TAELE 1

TARCET CATECORY s
Aircraft - no maneuver max (20,1.5/T)
Aircraft - maneuver max (20,1/T)
Ground Target max (20,2/T)
. L Low Altitude - no maneuver max {20,2/T7)
G Low Altitude - maneuver max (20,1/T)
h Helicopter max (20,1.5/7)
E Low Acceleration missile max (20,1.5/7)
S High Acceleration missile max (20,1/T)
‘..' h: A]SO. NS S 500
MEASUREIENT NOISE COVARIANCE
The measurement noise variance R(tk) used in the Kalman filter is computed
! from past predicted filter resicuals., Let §(kep+2/k-p+1), p = 1,P be the P
o predicted states preceding t,. R(tK) is computed from
-;\_” (X 1)
£ e =3 F : :
2l R(t,) = F'pEI(m(tk'p+2) - Hs(k-p+2/k=-p+1)) (16)
i}q e Presently, P = 20,
b STATE NOISE COVARIANCE
iai . The state noise covariance for the Kalman filter should measure the uncertainty
R
o about the assumption of constant acceleration, Thus, it is realistic to choose

v q to measure the rate of change of acceleration, We could do this by differ-
encing the filtered acceleration, 33(k/k). However, to obtain a quicker re-
", C spo te, we have chosen to estimate a smoothed acceleration, §g (k) and differ-

‘_f-.: _ ence this quantity, Llet s3(k) be a 3-vector of position, velocity, and




acceleration and be the value of s(tk) which minimizes

N

~ -1 9
(50 =80k/KN TP (/K (8-SR 2 (il )oHoltygomdsly))s (17)
1=

where ﬁk is an average measurement noise variance over the interva) (tk'tk+rq)'
1

Minimizing (17) with respect to s(tk) results in the smoother equation

. nq
gq(k)=§(k/k)+Pq(k)Rr1 z oT(

T
-t )d {m(%
< ie k+1

).H¢(tk+i-tk)§(k/k)) (18)

“k+i

n (1€) P8(k) is the covariance matrix of gq(k),

r N

pd (k)=r'](k/k)4§;]

q
Z @T

I k+ -t )H H<:>(tk+1 k) (12)

The comroutation of'ﬁk is described in fppendix D,

The rate of change of acceleration used in estimating q is computed by differ-

encing the smoothed acceleration §§(k). Thus, we compute

Aq(k)-hq'k-])
i) = 03 (20)

bt

Rather than use a(k) = v q(k), it is much better to smooth the sequence, a(k),
with a fading memory filter and use the smooth filter output to compute v qlks.
Thus, we estimate a(k) to minimize

ke2

£ wia(k-1)-3(k))? (21)
i=0
vhere 0<w<l, The resulting steady state filter equation for a(k), obtained by

minimizing (21) and then finding the limiting steady state result is

....................
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(k1) = 3(K) + (=) (a(k+1)=a(k)) (22)

—

Then v q(k) = a(k).

-

The weight ' used in (22) is target depencdent, The weights for various categor-
- ies of targets are given in Table 2, The values of ! in this table have not
been optimized in any way but have yielded gocd performance on data from the

various target types, These values may be updated on the basis of future exper-

jence, An absolute upper limit, Qu' which is also target dependent, has been
nlaced on v g(k). This limit, while seldom reached, is necessary to prevent

- the Kalman filter from responding violently to occasional bad data (not spikes)

situations. The values of Qu are also given in Table 2, The values of I given
table 2 are for a sample rate of 20/sec., The values of W to be used for other
dﬁf | sample rates are calculated in the program from the table values in the followe
n u ing way, Let i, be the table value {20/s value) for a given target type and
o let Vi be the value to be used at the actual sampling period, T. Then
O T
ST [: 10910“ ‘TUF) 'logm..R (23)
[ ' TABLE 2 .
é‘ ' TA#CET CATEGORY Xy z X v 2
e Aircraft - no maneuver .05 ,05 .05 50 50 50
PP Aircraft - maneuver 3 .13 .13 500 500 500
. Cround Target .05 .05 .05 20 20 20
&.: . Low Altitude - no maneuver 05 ,05 ,05 50 50 50
L Low Altitude - maneuver A3 13,05 200 200 50
R Helicopter .05 ,05 ,05 50 50 50
Low Acceleration missile J3 13 13 200 200 200
ok High Acceleration missile 25 .25 ,25 5000 5000 5000

P
'
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Prascrtly, the look interval for state noise acaption is given by i = max

. (20,1.5/T), wher2 T is sampling interval of the measurements., Also, 2:q5 5C,
i THE NCJCINT FILTED
el The acjoint filter is a Kalman like filter runninj backwarcs in time which uses

the Xalman filter residuals as input anc also uses the Kalman filter jain vector,
The optimal fixed interval smoother estimates are cbtained by rroperly combining
the Kaliman filter states with the adjocint filter states. Let X{k-1/k) and

A(k/k) be the predicted and filtered state vectors {3-vectors) of the adjoint
filter. Alsc, let A(k-1/k) and A{k/Kk) be the covariance matrices of the pre-

v dicted and filtered acjoint state vectors. The equations governing the adjoint

state vectors and their covariances are given by:

N Rk/es) = o (40301 /641, (24)
A(k/k1) = o8 ) A(K#1/K41)9{8,) (25)
i Ak/k) = Rk/ke1) = KDL (r(k/k=1)43, K R(K/k41)), (26)
AK/K) = (1=K H) TA(K/k+1) (1=K H)+HTD T H (27)
!! kb K i
In the above equations r(k/k-1) is the predicted Kalman filter residual,
: r(k/k=1) = m{t,)-45(k/k=1), (28)
- Dk is the covariance of this predicted residual,
_ D, = HP(K/K=T)HT4R(t, ), (29)
£ and Kkis the Kalman filter gain vector,
o Ta=1
c K, = P(k/k=1)H Dy (30)

In contrast to the Kalman filter the equations of the adjoint filter are imple-

i mented directly rather than usinj a matrix square root implementation,

(3]
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The adjoint filter is initialized at the final trajectory time, t.., and at
the end of any measurement sequence preceeding a large time break, The ad-

joint Tilter is initialized by,

An/) = -HTD;'.]r(N/N-l) (31)
MEIR) = :»Ta,',]n (32)

COTINAL 5i0CTHED £STINATES

The optimal, fixed interval smoothed estimates ars obtained by combining the
states of the Kalman filter with the states of the adjoint filter. /ssuming
trajectory state estimates are desired only at the measurement times, the

smoothed estimates are computed from,
(k) = §(k/k) - P(k/K)R(k/Kk+1) (33)

and the covariance of this estisate can be computed from (if desired for out-

put),

P(k) = P(k/k) - P(k/k)A{k/k+1)P(k/K) (34)
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APPENCIX &

The matrix factorization algorithm described below for obtairing the U-T fac-
tors of a positive definite matrix plus a symmetric dyad was first reported in )

[ 3] and later described by Bierman in [ 2]. !

Given a positive cefinite matrix P, a vector V, and a scalar ¢, we form the
ratrix 3, i

F=p 4w

Suppose we have a unit upper triangular matrix U and a positive diagonal
~ AAN

matrix © such that P = UDU', An algorithm for computing the U-[ factors,

Uand T, of T is given by the following sequence of steps,

B1) = D(1) + cv3(1) I=it,1

V(K) & V(K) - V(1) U(K,D) \
L - . cv(1) K=1,1-1
[ U(K,I) 2 U(K,I) + = V(K) I=N,2
S A £(1) ’
. - . eD(1) }
;o T

In the above algorithm the symbol = represents tne FCRTRAN replacement

RS AP i

equality., tliote that the computation of the U-D factors can be done in

place with the D(I) stored along the diagonal of U,

ey e
»
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'. APPENDI X S
The following algorithm is taken from Bierman [ 2], p77. This algorithm com-
- putes the U-[ factors of the posterior Kalman filter covariance matrix,
- P(k+1/k+1) = P,
P =P - PHI(HPHT + R)" P (21)
Let U and T be the U-D factors of F,
¥ - W0 (82)
; Let f, v, and Sg be Ne-vectors
& £ = THT
v = Of
‘ o = v(1)F(1) + 2, 9y = (v(1)0==-0)
) D(1) = D(1)R/q,
v
S RCAR +v(J)f(J) \
| 2J) =B
o D(J) D(J)CXJ.]/O.J
U(K,9) = T(K,9) = F(9)g,(K)/ay ( o=2.H
~ K=1,J
8341 (K) = 35(K) + v(2)U(K,)
' The vector g, ../a, will be the Kalman filter gain, The computaticn of U and D
can be done in place, if desired,
[
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APPZNDIX C

The algorithm presented belcw obtains the U-C factors of the positive ce-

T

finite, X! matrix P, P = UCU', where U is upper triangular and T is a pos-

itive diagonal matrix,

-
o(h) = P(it,N)
U(K/R) = P(K,R)/D(N), K=1, Wel
h
o(1) = P(I,1) = T U3(I,K)D(K), I=N-1,1
) K=I1+]
&3

K
U(K,I) = (P(K,I) = T u{Kk,L)e{L)u{1,L))/d(1),K=1, I-1, I=N=1,2
L=K+]

|
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The average noise variance, ﬁy, over the interval (tk, tyen ) is computed by

N Kq
fitting a quadratic curve to the measurements in the interval and then letting
ﬁy be the variance of the measurement residuals from the fit, Consider the

quadratic model,

m(tk+i) =a+ bt t,) +c(t

ki~ k) -t )%, 1=, Ng

k+i

Let a, 5, ¢ be the least squares estimates of a, b, c. The residuals from

this fit are
" . = - ~ - ey - - ~ - 2 s = )
6(k+1) m(tk+i) a-> (tk+i tk) c (tk+i tk) v i=1, Ng

The noise variance ﬁr used is computed by

= N
R =y L. 6%(kei)
N ) q 1.3]

This value is used only if Ng210, 1If Ng<10, R, = R(t, ) is used,
q q K k

- m— At Mt ma
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